
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Wachs J, Yasseri T, Lengyel B,

Kertész J. 2019 Social capital predicts corruption

risk in towns. R. Soc. open sci. 6: 182103.

http://dx.doi.org/10.1098/rsos.182103
Received: 14 December 2018

Accepted: 12 March 2019
Subject Category:
Physics

Subject Areas:
e-science/complexity

Keywords:
social networks, corruption, social capital
Author for correspondence:
Johannes Wachs

e-mail: johanneswachs@gmail.com
& 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.figshare.

c.4448138.
Social capital predicts
corruption risk in towns
Johannes Wachs1, Taha Yasseri2,3, Balázs Lengyel4,5

and János Kertész1,6

1Department of Network and Data Science, Central European University, Budapest 1051,
Hungary
2Oxford Internet Institute, University of Oxford, 1 St Giles, Oxford OX1 3JS, UK
3Alan Turing Institute, 96 Euston Road, London NW1 2DB, UK
4Agglomeration and Social Networks Lendület Research Group, Hungarian Academy of
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Corruption is a social plague: gains accrue to small groups, while

its costs are borne by everyone. Significant variation in its

level between and within countries suggests a relationship

between social structure and the prevalence of corruption, yet,

large-scale empirical studies thereof have been missing due

to lack of data. In this paper, we relate the structural

characteristics of social capital of settlements with corruption

in their local governments. Using datasets from Hungary, we

quantify corruption risk by suppressed competition and lack of

transparency in the settlement’s awarded public contracts. We

characterize social capital using social network data from a

popular online platform. Controlling for social, economic

and political factors, we find that settlements with fragmented

social networks, indicating an excess of bonding social capital has

higher corruption risk, and settlements with more diverse

external connectivity, suggesting a surplus of bridging social
capital is less exposed to corruption. We interpret fragmentation

as fostering in-group favouritism and conformity, which

increase corruption, while diversity facilitates impartiality in

public life and stifles corruption.
1. Introduction
Corruption is widely recognized to affect adversely social and

economic outcomes of societies [1], yet it is difficult to fight [2].

Though education and income seem to decrease corruption [3], it

persists even under highly developed, democratic conditions and

has significant regional variation within countries [4]. Researchers

often relate corruption to social aspects of society such as

segregation [5], interpersonal trust [6], civic-mindedness [7] and
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community engagement [8]. These approaches build on the insight that corruption is a collective outcome of

a community shaped by the interactions among individuals [9], suggesting that differences in social capital,

especially in the network structure, may help explain the persistence of corruption and the observed

differences in its levels.

The concept of social capital or the ‘connections among individuals—social networks and the norms of

reciprocity and trustworthiness that arise from them’ [8] is usually applied to understand the behaviour of

individuals [10]. Yet, city- or country-level aggregations have also proved useful [8], for example in studying

economic development and prosperity [11]. As a communal quantity, social capital is a sort of public good

embedded in a social network [12] of a settlement. Given the aforementioned relationship between

corruption and social capital, it is therefore, as suggested above, natural to expect that the structure of

social capital at the settlement level has considerable impact on the scale of corruption in that

community. Despite a significant interest in the network aspects of corruption [13] and recent

experimental evidence that corruption has collaborative roots [14], less is known about how the patterns

of connectivity of a whole society influence the general level of corruption in its government.

Previous studies of relating social capital and corruption [15,16] have been constrained by two empirical

challenges: the difficulty of measuring corruption and the lack of data on network structure at the settlement

level. Corruption is one of the most hidden type of crimes; therefore, it is difficult to estimate its extent in

general, even with significant local information. For example, an audit study of corruption in rural

Indonesia road construction finds that, independent of objective measures of corruption risk, villager

perceptions of corruption are significantly distorted by factors such as ethnic diversity [17].

Many studies measure corruption using national or regional surveys [2] and suffer from the

subjectivity of corruption perceptions [18]. Other studies use data on the frequency of investigations

and convictions of politicians [3], in which a source of bias may be that in places where corruption is

prevalent the judiciary is more likely to be corrupt itself [19]. Recent efforts to clean and standardize

large datasets on public procurement [20] have been very helpful in this context as their study can

lead to new, more objective indicators of corruption risk.

In the absence of direct network data, researchers often quantify social capital using proxies such as

rates of voting, donating blood and volunteering [7]. As these rates are themselves related to the

underlying social networks, they indicate the relevance of social capital and trust instead of

explaining the causes of corruption in terms of network structure. Mapping out the social capital at

the level of settlements using traditional tools is a formidable task. Fortunately, recent developments

in information-communication technologies and their increasing popularity present large datasets

containing relevant information. For example, data from online social networks and cellphone records

have been used to relate connectivity and socio-economic outcomes [21–25].

In this paper, we propose to characterize the level of corruption risk in settlements in terms of their social

capital using two sources of micro-level data from Hungary. We quantify the structural characteristics of

settlements’ social capital using complete data from ‘iWiW’, a now defunct online social network once

used by approximately 40% of the adult Hungarian population [26]. We measure corruption risk using

administrative data on public procurement contracts over a period of 8 years [27].

Public procurement contracts constitute a major channel of public funds to private hands and are

highly vulnerable to corruption [20]. Recently, a set of corruption risk indicators have been derived

from public contract data, for example, counting how often contracts attract only a single bidder.

Averaged to the regional or national levels, these contract-based corruption risk measures have been

shown to correlate with corruption perception surveys [20], quality of government indicators [28], and

higher cost outcomes for internationally comparable goods such as CT/CAT scanners [29]. In the

Hungarian case, we find that settlements involved in a recent corruption scandal [30] have

significantly higher corruption risk in their contracts.

Putnam distinguishes between two structural categories of social capital: bonding and bridging social

capital [8], and we expect that these have different impacts on corruption risk. Bonding social capital is

based on the phenomenon of closure in a social network, describing the extent to which people form

dense, homogeneous communities. Such communities have benefits: members share high levels of trust

and can count on each other in times of crisis. They can also be confident that members who defy the

norms of the community will be censured [31]. The homogeneity of such tight-knit communities is often

based on ethnicity, religion or class [32], indicating possible drawbacks to bonding social capital:

homogeneity facilitates conformity and implies exclusion of outsiders [33]. Solidarity can reach the extent

that insiders will protect each other even if norms from a wider context are broken, in some cases even if

crimes are committed. Sophisticated criminal organizations like the Mafia, members of which may

regularly be faced with great incentives to ‘flip’, rely on bonding rituals, ethnic homogeneity, and family
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ties to enforce solidarity and in-group trust [13,34]. The negative effects of excessive bonding social capital

on society are not limited to crime and corruption. Entrepreneurs embedded in dense networks

are disadvantaged because of pressure to employ under-qualified relatives [35], while ethnically

homogeneous groups of traders are more likely to overprice financial assets held by their co-ethnics,

causing financial bubbles to form [36].

Bridging social capital, on the other hand, refers to the connections between people from different

social groups. Such ties are valuable for their ability to convey novel information [37] and exposure to

diverse perspectives, though they do not serve as reliable sources of support in hard times. Previous

work shows, for instance, that immigrants in The Netherlands with bridging connections outside their

ethnic group have significantly higher incomes and employment rates [38]. But, bridging social capital

is not only thought to be useful for the resources it allocates. Using an agent-based model, Macy and

Skvoretz showed how trust emerged among densely connected neighbours and diffused in a social

network via weak ties [39], implying that low bridging social capital restricted trust to within-group

interactions. Indeed, empirical evidence showed that ethnic groups in diverse communities with more

bridging social capital evaluate each other more positively [40].

The two concepts of bonding and bridging social capital exist in tension with each other. They reflect, to

quote Portes, ‘Durkheim’s distinction between mechanical solidarity, based on social homogeneity and

tight personal bonds, and organic solidarity, based on role differentiation, impersonal norms, and an

extensive division of labor’ [41]. A settlement in which mutual cooperation relies excessively on

mechanical solidarity will tend towards norms of in-group favouritism or particularism [2]. Individuals

in such a society will tend to make choices, for example, in the allocation of public resources,

distinguishing between insiders and outsiders based on a feeling of security rather than trust [42]. By

contrast, when cooperation is built on impersonality, general trust facilitates impartial outcomes.

We therefore pose two hypotheses relating bonding and bridging social capital to local corruption

risk. The first (H1) is that excess bonding social capital, indicating the potential presence of norms of

in-group favouritism in a settlement is correlated with higher corruption risk in its government. The

second (H2) is that a high level of bridging capital, including connections to other settlements, is

correlated with lower levels of corruption risk because it fosters impersonal and universalistic norms.

Where mechanical solidarity or bonding social capital dominates organic solidarity or bridging social

capital, universalistic norms under which public markets are thought to function best are

unsustainable. These hypotheses suggest why corruption is so difficult to fight: it is embedded in the

social network of a place.

Previous work using survey data is in accord with our hypotheses. Harris finds a significant positive

relationship between excess bonding social capital, measured using surveys, and corruption across over

200 countries [16]. In a comparative study of the 50 USA states, Knack finds that residents in states with

higher census response and volunteering rate their governments’ performances more highly [43]. He

finds no such effect for rates of membership in social clubs, a more exclusive form of socialization

than volunteering. Paccagnella & Sestito [44] find that in regions with high electoral turnout and

blood donation rates, Italian schoolchildren cheat less frequently on standardized tests. In schools

with greater ethnic homogeneity and with hometown teachers, cheating is more frequent. These case

studies and indirect evidence give some support the above hypotheses; however, there is need for

studies based on more direct data at multiple levels.

We find significant evidence for our hypotheses using multivariate regression models to relate

corruption risk and structural aspects of social capital. Hungarian settlements with fragmented social

networks, which we interpret as evidence of excess bonding social capital, have higher corruption risk

in their public procurement contracts. But, if the typical resident of a settlement has more diverse

connections, especially over the boundaries of their own settlements, then local corruption risk is

lower. These results hold controlling for several potential confounders including economic prosperity,

education, demographics and political competitiveness.
2. Empirical setting and methods
2.1. Public contracting
In OECD economies, procurement typically accounts for between 10 and 20% of GDP [45] covering

everything from school lunches to hospital beds and highway construction. The complexity of the



Table 1. Elementary indicators of public contract corruption risk. More detail is provided in the electronic supplementary
material.

indicator and symbol values indicator definition

single bidder Csinglebid f0, 1g 1 if a single firm submits an offer.

closed procedure Cclosedproc f0, 1g 1 if the contract was awarded directly to a firm or by

invite-only competition.

no call for bids Cnocall f0, 1g 1 if no call for bids was published in the official

procurement journal.

long eligibility criteria Celigcrit f0, 1g 1 if the length in characters of the eligibility criteria for firms

to participate in the tender is above the market average.a

extreme decision period Cdecidetime f0, 1g 1 if the award was made within 5 days of the deadline or

more than 100 days following.

short time to submit bids Cbidtime f0, 0.5, 1g 1 if the number of days between the call and submission

deadline is less than 5, 0.5 if between 5 and 15.

non-price criteria Cnonprice f0, 1g 1 if non-price criteria are used to evaluate bids.

call for bids modified Ccallmod f0, 1g 1 if the call for bids was modified.
aWe define a market in terms of two-digit common procurement vocabulary (CPV) codes, an EU-wide taxonomy of goods and
services [48].
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contracts and the relative inelasticity of the government’s demand for goods make them a prime target

for corruption [46].

Contracts are supposed to be awarded using impartial market mechanisms [47]: open and fair

competition for a contract is considered the best way to ensure that the government makes purchases

of good quality at the lowest cost. Usually, an issuer of a contract publishes a call for bids from the

private sector, setting a deadline for submissions leaving enough time for broad participation.

Companies submit sealed offers, including a price. The company offering to provide the good or

service for the lowest price, meeting the standards set in the call for bids, wins the contract.

2.1.1. Measuring settlement corruption risk in contracting

Corruption in public contracting typically involves the restriction of competition. If corrupt bureaucrats

wish to award a contract to a favoured firm, they must somehow exclude other firms from participating

in the competition for the contract. We quantify this phenomenon at the contract level by tracking the

presence of elementary corruption indicators, signals we can extract from metadata suggesting that

competition may have been curbed [20]. These quantitative indicators [27], deduced from qualitative

work on corruption in public contracting, are the fingerprints of techniques used to steer contracts

towards preferred firms. We consider eight such elementary indicators, defined in table 1. From these

eight elementary indicators, we define two measures of contract corruption risk:

Closed procedure or single bidding (Ccsb). Did the contract attract only a single bid or was the contract

awarded by some procedure besides an open call for bids, for example by direct negotiation with a firm

or by an invitation-only auction? In terms of the indicators defined above:

Ccsb ¼ max (Csinglebid, Cclosedproc)

Corruption risk index (CRI). Following [27], we average all eight elementary indicators defined in

table 1 for each contract:

CRI ¼ 1

8
(Csinglebid þ Cclosedproc þ Cnocall þ Celigcrit þ Cbidtime þ Cnonprice þ Ccallmod þ Cdecidetime):

These indicator-based measures of corruption risk have been related to traditional measures of

corruption at the regional and national levels. Among EU countries, similar indicators are correlated

(r � 0.5) with both the World Bank’s Control of Corruption rankings and Transparency International’s

Corruption Perceptions Index [20]. We propose that our indicators supplement these perception-based

measures with more objective data at a micro-scale.
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Figure 1. Distributions of average contract corruption risk indicators across Hungarian settlements.
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Our indicators also predict cost overruns and price inflation in European infrastructure projects [29]. At

the micro-level, public bodies issuing high corruption risk contracts are significantly more likely to award

contracts to new companies after a change in government [49]. Finally, evidence from the USA suggests that

firms making campaign contributions are awarded contracts with higher corruption risk [50].
2.1.2. Local government contracting data

We examine 20 524 municipal government contracts from the period of 2006–2014 issued by Hungarian

settlements awarding at least five contracts a year on average. We exclude towns issuing fewer contracts

because we are interested in systematic patterns of corruption over a sustained period of time. Our

indicators applied to individual contracts are only noisy measures of corruption—it is rather the

consistent observation of red flags in contracting over time that suggests that a town has a significant

problem with persistent corruption risk. Our results are robust to including towns issuing at least one

contract per year on average, reported in the electronic supplementary material.

Our goal is to quantify the overall level of corruption risk in a settlement over the full period for

which we have data. We create two such scores by averaging the risk indicators defined above over

all contracts issued by the settlement. We arrive at two measures of settlement corruption risk: the

rate at which a settlement issued closed-procedure or single bid contracts (Ccsb), and the average

corruption risk index (CRI) score of its contracts.

There are 169 settlements in Hungary meeting the minimum contracting criterion, excluding

Budapest. We exclude Budapest for two reasons: because it is a severe outlier in size and economic

importance and because of its unique governance structure. Budapest is split into 23 districts, each

with its own local government and mayor. It also has a city-wide government and mayor. As iWiW

treats Budapest as a single settlement and as many contracting decisions are taken at the district level,

we judged that we could not reasonably compare the full city with other settlements in Hungary.

We plot the distributions of the settlement corruption risk scores in figure 1. We note that there is

substantial variation across settlements: some award over 90% of their contracts either via a closed

procedure or to a single bidding supplier, while others do so less than 25% of the time.

As a test of the validity of our settlement-level measures of corruption risk, we check them against a

near-ground truth case of corruption. In 2018, OLAF, the European anti-fraud agency reported that 35

Hungarian local government public lighting contracts awarded between 2010 and 2014 contained

‘serious irregularities’ [30]. Elios, the company winning these contracts, was owned at that time by the

son-in-law of the Hungarian Prime Minister. The contracts are considered to be overpriced and the

Hungarian government was appealed for initiating an investigation, which has already started.

These cases provide a useful test of our corruption risk indicators. There is compelling evidence that

settlements implicated in the scandal have, at least once, rigged a public procurement contract to favour a

connected firm. We compare the average corruption risk indicators of the 35 settlements that awarded

lighting contracts to Elios in the period in question with all other settlements in our sample in

figure 2. Using a Mann–Whitney U-test, we find that settlements involved in the scandal have
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significantly higher rates of corruption risk according to both measures (64% versus 58% Ccsb rate, U¼ 1385,

p ¼ 0.033; 0.30 versus 0.28 average CRI, U ¼ 1397, p¼ 0.037).
2.2. Measuring social capital
iWiW was a popular online social network operating in Hungary from 2004 to 2013. At its peak, it boasted

over 3.5 million active users (out of a population of around 10 million) and was among the top 3 most visited

sites in the country. After a period of sustained popularity, it finally collapsed in 2013 as competitors,

including Facebook, conquered the market. The increasing tendency of users to leave led to cascades in

the social network, highlighting the networked nature of the site [51,52]. Geographical proximity is a

major positive predictor of the likelihood of friendship ties on iWiW, and connections between

settlements reflect historical administrative boundaries and geographical barriers [26].

The iWiW network consists of users as nodes and mutually acknowledged friendship ties between

users as links. Data from iWiW include information on each user’s settlement, selected from a menu.

We used an anonymized version of the data to ensure privacy. We consider all nodes and links in the

network present at the end of 2012, during the peak of its use and before the most significant period

of turnover on the site leading to its collapse, to define our measures of bonding and bridging social

capital. We consider this aggregated network rather than an evolving network from year to year

because we do not have repeated interactions in our data (in contrast with the repeated links that can

be observed in cellular phone call data) and because we are interested in a long-run characterization

of the social network structure of settlements. We describe steps we took to clean the data and the

distribution of user rates at the settlement level in the electronic supplementary material.

Despite valid concerns about the representativity of data taken from online social networks [53], studies

indicate that data from online social networks offer a useful picture of the social capital of their users [54,55].

As adoption of online social networks increases, they become increasingly useful for the study of the social

structures [56]. In any case, we control for possible confounding factors including settlement average

income, rate of iWiW use and share of the population over 60 in our models.
2.2.1. Fragmentation

Our first settlement-level network measure, fragmentation, quantifies the extent to which people in the

settlement form densely connected and well-separated communities. We do not consider the links

residents of a settlement have with other settlements. Fragmentation measures a settlement’s bonding

social capital. Before we proceed, we note that ‘settlement’ will always be used to refer to a

municipality, while ‘community’ refers to a group of nodes detected in the iWiW social network of a

settlement using a network science algorithm, in other words a subset of the nodes of the town which

are densely connected.
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We measure fragmentation of the settlement’s internal social network using a community detection

method to identify communities of highly connected nodes. We use the Louvain algorithm [57], a

popular and efficient method leading to a partition of the network. We measure the quality of the

partition, the tendency of edges to be within rather than between the detected communities, using

modularity [58]. Given a social network of users in a settlement S and a partition of the network’s

nodes into K communities, the modularity Q(S) of the partition of the network can be written as follows:

Q(S) ¼
XK

k¼1

h Lw
k

L
�
�Lk

L

�2i
,

where L is the total number of edges in the considered network, Lk is the number of edges adjacent to

members of community k and Lw
k is the number of edges within community k.

As modularity is highly dependent on the size and density of the network [59], we scale each

settlement’s modularity score in order to make valid comparisons between the settlements. Following

Sah et al. [60], we divide each settlement’s modularity score by the theoretical maximum modularity

Qmax(S) that the given partition could achieve, namely if all edges were within communities.

Qmax(S) ¼
XK

k¼1

h Lk

L
�
�Lk

L

�2i
:

We then define the fragmentation FS of a settlement S as the quotient

FS ¼
Q(S)

Qmax(S)
: (2:1)

Fragmentation measures the tendency of individuals to belong to distinct communities within a

settlement. A fragmented settlement consists of tightly knit communities that are weakly connected.

Both the excess of connections within and the rarity of connections between communities in

fragmented networks are relevant to our theoretical framing of the origins of corruption as they

indicate excess bonding social capital. The high density of connections within a community facilitates

the enforcement of reciprocity, while having few connections between communities fosters particularism.

To better understand the concept of fragmentation, we compare two settlements, one at the 90th percentile

of fragmentation (settlement a) and the other at the 10th percentile (settlement b). The two settlements

have populations of roughly 10 000 and have iWiW user rates between 30 and 35%. We randomly sample

300 users from both social networks for the sake of visualization and plot their connections in figure 3.

Settlement a is clearly more fragmented than settlement b. We also show the full adjacency matrices of

the networks of these settlements, grouping nodes by their detected communities into blocks on the

diagonal shaded in red. We label each community by the share of its edges staying within the community.

The fragmented settlement has a clear over-representation of within-community edges.
2.2.2. Diversity

Past research on online social networks noted that users connect with people from a variety of focal experiences

in their life-course [54]. For example, a user may connect with her schoolmates, university classmates,

coworkers, family, and friends from environments including social clubs, sports teams or religious

communities. We measure the diversity of an individual user’s network by the (lack of) overlap between

these foci. In this case, we do not restrict our attention to edges between users from the same settlement.

Following Brooks et al. [54], we consider the connections among the friends of a focal user or ego, i.e.

the ego network without the ego. We then detect communities in the resulting network using the

Louvain algorithm [57]. We can assume that members of a community of alters share some common

context. We measure the separation of these communities of alters using modularity. Low modularity

indicates that a user’s connections tend to know each other, and that the user’s different spheres of

life involve the same people. High modularity indicates that the ego has a bridging role between

weakly connected communities, and so we refer to such users as having high diversity in their social

networks. We show examples of low and high diversity users with networks of similar sizes in figure 4.

We aggregate this user-level measure to a measure of settlement diversity DS by averaging each user’s

modularity score

DS ¼
1

jSj
X
i [S

Q({altersi}),
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48%
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Figure 3. Sampled social networks and adjacency matrices of high (a) and low (b) fragmentation settlements. Node colours indicate
membership in communities. In the adjacency matrices, percentages indicate the share edges staying within each community. In the
fragmented settlement, communities have significantly fewer connections with other communities.

(b)(a)

Figure 4. Ego networks with low (a) and high (b) diversity. Colours indicate membership in detected communities in the ego
network. Circles denote users from the same settlement as the ego, while triangles mark users from elsewhere. The high
diversity user’s network has clusters of alters mostly from different settlements.
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where jSj is the number of nodes in the settlement S and faltersig is the subgraph of the alters of node i [ S.

This measure captures the typical diversity of social perspectives that the members of the settlement access.

At the settlement level, this measure captures bridging social capital.
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Settlement diversity is positively correlated with share of the population graduating from high school

(r � 0.62) and average income (r � 0.55). Fragmentation and diversity are positively correlated (r � 0.46),

which is not surprising given that both are calculated using network modularity. However, the ego-focus

and, more importantly, the inclusion of inter-settlement edges of the diversity measure distinguish it

from fragmentation (see the electronic supplementary material). Despite this correlation, we observe

that they predict different corruption outcomes.

2.3. Models
The primary aim of our paper is to relate bonding and bridging social capital in settlements to corruption

risk in their public contracts. Our hypothesis H1 is related to excess bonding social capital, measured by

fragmentation, while hypothesis H2 refers to surplus in bridging social capital, measured by diversity.

We predict average contract corruption risk at the settlement level using ordinary least squares (OLS)

multiple regressions of the following form:

CS ¼ b1 �FS þ b2 �DS þ XS � uþ eS,

where CS is one of two corruption risk indicators, averaged at the settlement level, FS is the settlement’s

fragmentation, DS is the settlement’s diversity, XS is a matrix of control variables defined below and eS is

an error term. The bs are scalar and u a vector of unknown parameters.

We include a variety of control variables in our regressions. Past research has found significant

relationships between wealth, education, employment and corruption [2], so we control for settlement

average income, its share of high school graduates, the presence of a university in the settlement, and its

unemployment and inactivity rates. As demographic features of settlements may influence the measured

social network, we include total population, rate of iWiW use and share of the population over 60 in our

models [61]. These socio-economic controls indicate 2011 levels when possible, as 2011 was the most

recent Hungarian census. We also control for the settlement’s mayor’s average victory margin in the

2002, 2006 and 2010 elections as a proxy for the level of political competition in the settlement, which

has been found to be positively related with local quality of government [62]. Finally, we include a

geographical feature of the settlements: the minimum travel distance in minutes from the capital,

Budapest. Past work indicates that distance from central authorities predicts higher rates of corruption

[63]. We present additional details on the control variables in the electronic supplementary material. For

the sake of comparison, we fit a baseline model including only the control terms.

Implicit in our modelling framework is our choice to aggregate the social network measures,

corruption risk scores and controls of settlements into a single snapshot. Contracts range from 2006 to

2014, iWiW friendships from 2002 to 2012, and controls are set at 2011 levels (corresponding to the

last Hungarian census). As we are studying the relationship between social structure and corruption,

both long-run phenomena, we claim that this represents sufficient temporal overlap.
3. Results
We summarize our findings in table 2. We see that there is a significant relationship between social

network structure and both dependent variables measuring corruption. More fragmentation

consistently predicts more corruption, while more diversity consistently predicts less corruption. In

both cases, adding the network features significantly improves the adjusted R2 of the model.

Moreover, comparing the coefficients, we see that the social network features have effect sizes

comparable to that of any social, political or economic control. We present alternative specifications

and robustness checks in the electronic supplementary material, including the intermediate models

containing only one network feature. All models pass a variance inflation factor (VIF) test for feature

collinearity (see the electronic supplementary material).

We visualize the effects of our network variables in figure 5. We plot model-predicted rate of closed

procedure or single-bid contract awards (Ccsb) including 90% confidence intervals for varying levels of

fragmentation and average ego diversity. As the variables are standardized, the units can be

interpreted as standard deviations from the mean (at 0). We observe that, all else equal, our model

predicts that going from one standard deviation below average fragmentation to one standard

deviation above average, increases Ccsb by about one half of a standard deviation. Diversity has a

stronger effect in the other direction: the same change (from one standard deviation below average to

one above average) induces a full standard deviation decrease in the corruption indicator. The effect



Table 2. Settlement-level regression results predicting two corruption risk indicators. For both dependent variables, the first
columns (1) and (3) correspond to the base model, predicting corruption risk using only control variables, and the second
columns (2) and (4) show results, when the social network features are included. Note that all features are standardized with
mean 0 and standard deviation 1.

dependent variable: % closed or single bid average CRI

(1) (2) (3) (4)

fragmentation 0.263*** 0.207**

(bonding social capital) (0.097) (0.092)

diversity 20.553*** 20.551***

(bridging social capital) (0.176) (0.168)

income/capita 20.262 20.277* 20.075 20.096

(0.169) (0.162) (0.161) (0.155)

N contracts (log) 20.313* 20.314* 20.685*** 20.697***

(0.171) (0.165) (0.162) (0.158)

population (log) 20.180 0.020 0.118 0.335**

(0.143) (0.166) (0.136) (0.159)

rate iWiW use 0.045 0.037 0.122 0.107

(0.137) (0.132) (0.130) (0.126)

mayor victory margin 0.278*** 0.255*** 0.303*** 0.281***

(0.089) (0.086) (0.085) (0.082)

% high school grads 0.166 0.374* 20.176 0.040

(0.190) (0.199) (0.181) (0.190)

distance to Budapest 20.021 20.198* 0.061 20.112

(0.104) (0.112) (0.099) (0.107)

share of pop. inactive 20.797*** 20.805*** 20.716*** 20.754***

(0.229) (0.229) (0.218) (0.219)

unemployment rate 0.239** 0.262** 0.299*** 0.320***

(0.118) (0.113) (0.112) (0.108)

% population 60þ 0.501*** 0.491*** 0.500*** 0.503***

(0.163) (0.158) (0.155) (0.151)

has university 0.351 0.294 0.431** 0.352*

(0.220) (0.221) (0.210) (0.211)

constant 1.245* 1.206* 2.779*** 2.790***

(0.725) (0.702) (0.689) (0.671)

observations 169 169 169 169

adjusted R2 0.163 0.230 0.183 0.243

F statistic 3.967*** 4.859*** 4.419*** 5.142***

Significance thresholds: *p , 0.1; **p , 0.05; ***p , 0.01.
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of the network features on CCRI is similar. In the electronic supplementary material, we present an

ANOVA feature importance test that indicates the significance of both network-based features.
4. Discussion
In this paper, we used data from an online social network and a collection of public procurement

contracts to relate the social capital of Hungarian settlements to the corruption in its local
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Figure 5. Plots of marginal effects of the key social capital variables and their predicted impact on a settlement’s rate of closed
procedure or single bidder contract awards; shaded regions represent 90% confidence intervals. As the variables are standardized,
unit changes on either axis can be interpreted as standard deviation changes. Fragmentation (a), quantifying excess bonding social
capital in a community, predicts higher corruption risk, while diversity (b) predicts lower corruption risk.
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government. To our knowledge, this paper is the first to study social aspects of corruption using large-

scale social network data.

We introduced measures to quantify excess bonding and bridging social capital at the settlement level

from online social network data. We found that settlements with high bonding social capital tend to

award contracts with higher corruption risk. We also found that settlements with high bridging social

capital tend to award lower corruption risk contracts. Social capital measures add substantive

predictive power to models of corruption outcomes, above baseline models controlling for other socio-

economic factors such as average income, education, political competition and demography.

We recognize several limitations to our approach. An inherent challenge in the research of corruption

is that proven cases are rare, and so our measures can only track risk or suspicion of corruption.

Moreover, we assume that steering contracts to certain firms by bureaucrats indicates corruption—but

it may happen that bureaucrats make socially optimal decisions using their local knowledge of

markets and discretion [64].

It is also clearly the case that iWiW is not a full map of social relations in Hungary and its users do not

make up a representative sample of the population. Finally, we do not claim to have found a causal link

between social capital and corruption risk. Besides the potential of omitted variable bias, it is highly

likely that corruption also influences social capital in the long run [65].

Despite these limitations, we believe that our findings are valuable. Above all, our novel, data-based,

settlement-level approach provides new evidence for the old hypothesis that corruption is a structural

phenomenon. Our finding that social structure relates to corruption risk suggests, for example, why

appointing an ombudsman in a corrupt place rarely improves corruption outcomes [2] and why anti-

corruption laws can backfire if they conflict with prevailing social norms [66].

That is not to say that fighting corruption is futile. Rather we believe our findings suggest that top-

down efforts are unlikely to work unless they impact social capital or other significant covariates of our

model like political competition. Our conclusions hint at potential mechanisms which sustain corruption.

Factors, such as racial segregation or economic inequality, which may drive fragmentation are ideal

targets for policy interventions [6].
Data accessibility. As the iWiW data are protected under an NDA, we are only able to share settlement-level aggregated

data of network features. Aggregated data and code to replicate our models and results are deposited at the Dryad

Digital Repository at: https://doi.org/10.5061/dryad.jb48dg0 [67].
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